					5
	_	_		ı	
		_	•		
	•	-	Ļ		
	ı	1		ľ	
		٦		١	
9	C	J	P)	

Question Booklet No.:	
3303032	

2021

CHEMICAL ENGINEERING

Register Number

(Degree Standard)

Duration: Three Hours]

[Total Marks: 300

Read the following instructions carefully before you begin to answer the questions.

IMPORTANT INSTRUCTIONS

- 1. You will be supplied with this question booklet 15 minutes prior to the commencement of the examination.
- 2. This question booklet contains 200 questions. Before answering the questions, you are requested to check whether all the questions are printed serially and ensure that there are no blank pages in the question booklet. If any defect is noticed in the question booklet, it shall be reported to the invigilator within the first 10 minutes and get it replaced with a complete question booklet. If the defect is reported after the commencement of the examination, it will not be replaced.
- 3. Answer all the questions. All the questions carry equal marks.
- 4. You must write your register number in the space provided on the top right side of this page. Do not write anything else on the question booklet.
- 5. An answer sheet will be supplied to you separately by the room invigilator to shade the answers.

 Instructions regarding filling of answers etc., which are to be followed mandatorily, are provided in the answer sheet and in the memorandum of admission (Hall Ticket).
- 6. You shall write and shade your question booklet number in the space provided on page one of the answer sheet with BLACK INK BALL POINT PEN. If you do not shade correctly or fail to shade the question booklet number, your answer sheet will be invalidated.
- 7. Each question comprises of five responses (answers): i.e. (A), (B), (C), (D) and (E). You have to select ONLY ONE correct answer from (A) or (B) or (C) or (D) and shade the same in your answer sheet. If you feel that there are more than one correct answer, shade the one which you consider the best. If you do not know the answer, you have to mandatorily shade (E). In any case, choose ONLY ONE answer for each question. If you shade more than one answer for a question, it will be treated as a wrong answer even if one of the given answers happens to be correct.
- 8. You should not remove or tear off any sheet from this question booklet. You are not allowed to take this question booklet and the answer sheet out of the examination room during the time of the examination.

 After the examination, you must hand over your answer sheet to the invigilator. You are allowed to take the question booklet with you only after the examination is over.
- 9. You should not make any marking in the question booklet except in the sheets before the last page of the question booklet, which can be used for rough work. This should be strictly adhered to.
- 10. Failure to comply with any of the above instructions will render you liable for such action as the Commission may decide at their discretion.

SPACE FOR ROUGH WORK

30000141

- 1. In which of the following reaction equilibria, Kp and Ky will have the same value?
 - (A) $N_2 + 3H_2 \rightleftharpoons 2NH_3$
- $N_2 + O_2 \rightleftharpoons 2NO$
- (C) $2SO_2 + O_2 \rightleftharpoons 2SO_3$
- (D) $2CO + O_2 \iff 2CO_2$

- (E) Answer not known
- 2. Degree of freedom at triple point will be
 - (A) 3.

(B) 2

(C) 1.

000

- (E) Answer not known
- 3. Enthalpy 'H' is defined as
 - (A) H = F TS

(B) H = F + TS

H = U + PV

(D) H = U - PV

(E) Answer not known

Where,

H-enthalpy

U - Internal energy

P-Pressure

V - Volume

T - Temperature

S - Entropy

F-Force

- 4. The point at which an three phases (solid, liquid and gas) coenst is known as
 - triple point

(B) freezing point

(C) boiling point

(D) melting point

- (E) Answer not known
- 5. Hess's law of constant heat summation is based on conservation of mass. It deals with
 - (A) Equilibrium constant
- (B) reaction rate

- S
- changes in heat of reaction
- (D) heat of mixing
- (E) Answer not known .

6.	For a	an ideal gas, the compressibility fac	ctor	
	(A)	decreases with pressure raise	00	is unity at all temperature
	(C)	increases with pressure raise	(D)	zero
	(E)	Answer not known		
7	NT	,	1.	
7.	New	ton's second law gives the relations	snip as	
		Force = mass × acceleration		
	(B)	Force = mass / acceleration		
	(C)	Force = mass × volume		
	(D)	Force = pressure / volume		
	(E)	Answer not known		
8.	Wha	t will be molecular weight of nitric	acid (H	INO ₃)?
	(A)	43	(B)	53
	S	63	(D)	73
	(E)	Answer not known		
9.	In th	ne absence of experimental values		——— may be used to calculate heat
		city of solids.	N _a	
	(A)	Dulong and Petit law	(3)	Kopp's rule
	(C)	The Kistyakowsky equation	(D)	Trouton's rule
	(E)	Answer not known		
	. .			
10.		olefins Industries Limited at Bomb		
	(A)	Polyesters	(B)	Polymeric oils
	9	High density polyethylene	(D)	Butadiene
	(E)	Answer not known	*	

11.	The	softest material in Mho's scale (for	measu	ring hardness) is				
	SA	Talc	(B)	Gypsum				
	(C)	Rubber	(D)	Graphite				
	(E)	Answer not known						
12.	For	the uniform indexing of both ferrou	s and n	on-ferrous alloys ————	– is used.			
	45	Unified numbering system	(B)	Badegro numbering system				
	(C)	Reynolds number	(D)	ASTM standards				
	(E)	Answer not known						
					(0)			
13.	Cono	mation of calida forms are as a last	1					
10.		ration of solids from gases can be d						
	(A)	thickness		centrifuge				
	(C)	classifier	W	cycloes separater				
	(E)	Answer not known						
14.	Choo	Choose the wrong statement of the following:						
	US.	Filters operate a vaccum on the upstream side						
	(B)	B) Filters operate a vaccum on the downstream side						
	(C)							
	(D)							
	(E)	Answer not known						
	G 1							
15.		resistance is			•			
	(A)	important in the beginning of filti						
	(B)	decreased with the time of filtrati			A			
	(C)	independent of particle size and p						
	(1)	dependent on particle size and por	rosity	e e a veneral	Wei .			
	(E)	Answer not known						

- 16. In a standard agitated vessel, the typical proportion of liquid depth to tank diameter is
 - (A) $\frac{1}{3}$

(B) $\frac{1}{2}$

- 6
 - 1

(D) 2

- (E) Answer not known
- 17. Tumbling Mills operate at percentage of the critical speed.
 - (A) 5 15%

(B) 25 - 50%

65 – 80%

(D) 55 - 60%

- (E) Answer not known
- 18. Which one of the following is a Ultrafine grinder?
 - (A) Roller mills
 - (B) Tumbling mills
 - (C) Hammer mills

Fluid energy mills

- (E) Answer not known
- 19. The ratio of the area of openings in one screen to that of the openings in the next smaller screen for Taylor series is
 - (A) 1.5

(B) 1

(C) $\sqrt{2}$

- **3** 2
- (E) Answer not known
- 20. Which of the following equipment is suitable for mixing pastes and plastic masses?
 - (A) Agitated mills

(B) Jaw crusher

Pony mixer

(D) Colloid mills

21. The expression $\sum_{i=1}^{n} x_i \overline{D}_{pi}$ represent

Where,

 $x_i = \text{mass fraction in given increment}$

 \overline{D}_{pi} = average particle diameter

4

mass mean diameter

- (B) volume surface mean diameter
- (C) arithmetic mean diameter
- (D) volume mean diameter
- (E) Answer not known
- 22. Ultra fine wet grinding is done in
 - (A) Jaw crusher
 - ry crusher (B) Ball mill
 Agitated mill
 - (C) Gyratory crusher
 - (E) Answer not known
- 23. For mesophilic bacteria (30°C), the optimal digestion period is between and ————— days.
 - (A) 0 and 4 days

(B) 5 and 10 days

(C) 12 and 15 days

(15) 20 and 30 days

- (E) Answer not known
- 24. Which of the following fuel cells can with stand high temperature operation?
 - (A) Solid oxide fuel cells
 - (B) PEM fuel cells
 - (C) Alkaline fuel cells
 - (D) Molten carbon fuel cells
 - (E) Answer not known

	A	11–15% sucrose by weight	(B)	75–80% sucrose by weight
	(C)	1.1–1.5% sucrose by weight	(D)	60-65% sucrose by weight
	(E)	Answer not known	4	
26.	The	hydrogenation of oils in the pres	ence of n	ickel catalyst is a/an
	(A)	Endothermic reaction		
	0	Exothermic reaction		
	- (C)	Homogeneous reaction		
	(D)	Heterogeneous reaction		
	(E)	Answer not known		
27.	Four	drinier machine is used in		
	(A)	Sugar industry	(B)	Petroleum processing
	9	Paper industry	(D)	Glass industry
	(E)	Answer not known		
28.	In th	e manufacturing of paper, sulph	ite pulpii	ng is carried out between pH
	(A)	0.5 and 1	(B)	1 and 1.5
	(0)	1.5 and 5	(D)	5 and 7
	(E)	Answer not known		
29.	The :	ability to react with ————	enh	anced the use of unsaturated acids as
		forming vehicles for paints.	ÇIII.	anoca one use of unsaturated acids as
	(A)	Carbon	(B)	Hydrogen
	9	Oxygen	(D)	Nitrogen
	(E)	Answer not known		
ASC	E/2021		8	

The raw juice extracted from sugarcane contains

25.

- 30. Soda ash is
 - (A) CaSO₄

(B) NaOH

(C) Ca (OH)₂

Na₂CO₃

- (E) Answer not known
- 31. Sulphuric acid is sold in the form of oleum and is
 - (A) SO₂ in water

SO₃ in H₂SO₄

(C) SO₃ in water

(D) SO₂ in H₂SO₄

- (E) Answer not known
- 32. Which among the following belongs to a category of continuous indirect heat dryers?
 - Drum dryer

(B) Screen - Conveyor dryer

(C) Vacuum tray dryer

(D) Rotary dryer

- (E) Answer not known
- 33. selectively adsorbs oxygen from air and is used for the production of nitrogen.
 - (A) Lime

Carbon molecular sieve

(C) Graphene

(D) Silica gel

- (E) Answer not known
- 34. The unit of gas mass velocity used in absorption columns is
 - (A) $\frac{\text{Kg}}{\text{s}}$

(B) (Kg.m)/S

Kg/m².s

(D) Kg/(m.s)

35.		t should generally be the minimu er and the solvent so that phase ser		ctional density difference between the on may not be very difficult?
	(A)	1%	(B)	5%
	(C)	20%	(D)	25%
	(E)	Answer not known		
36.		oinary gas mixtures at low pressure and ———— with increa		usivity — with increasing emperature.
	(1)	decreases, increases	(B)	increases, increases
1 . W	(C)	increases, decreases	(D)	decreases, decreases
	(E)	Answer not known		
37.	Conc	[2] (2) 2] [4] [2] (2) [4] [4] (4] (5) (6] (6] (6] (6] (6] (6] (6] (6] (6] (6]	a non	volatile solute and a volatile solvent i
	(A)	Drying	(B)	Distillation
	(C)	Boiliy	(0)	Evaporation
	(E)	Answer not known		
38.		sensitive materials such as fruit juorator.	uices o	
	(A)	Long tube	(3)	Falling film
	(C)	High pressure	(D)	Forced circulation
	(E)	Answer not known		
39.	The	physical significance of Grashof nur	nber i	S
	(4)	Buoyancy forces - inertia forces	4D	Buoyancy forces × inertia forces
,	(A)	(viscous forces) ²		(viscous forces) ²
	(C)	Buoyancy forces × inertia forces ²	(D)	Buoyancy forces ² × inertia force
	(C)	(viscous forces) ²	(D)	(viscous forces) ²
	(E)	Answer not known	•	

40. Kirchhoff's law states that

Where

 W_1 and W_2 = Total radiating power of two bodies

 α_1 and α_2 = Absorptivism of two objects

$$\frac{W_1}{\alpha_1} = \frac{W_2}{\alpha_2}$$

(B)
$$\frac{W_1}{\alpha_2} = \frac{W_2}{\alpha_1}$$

(C)
$$\frac{\alpha_1}{W_1} = \frac{\alpha_2}{W_2}$$

(D)
$$\frac{\alpha_1}{W_2} = \frac{\alpha_2}{W_1}$$

(E) Answer not known

41. The unit for thermal conductivity is

Where

w = Watt

m = meter

k = kelvin

(A)
$$wm/k$$

(B)
$$\frac{m}{wk}$$

(C)
$$\frac{k}{wm}$$

(E) Answer not known

42. Which of the following is correct with respect to thermal conductivity values

(E) Answer not known

43. Emissivity of the body is

- (A) Same as the total emissive power to black body
- (B) The total emissive power of black body minus the total emissive power of other bodies

The ratio of total emissive power of a body to that of a black body

- (D) The ratio of total emissive power of black body to that of other body
- (E) Answer not known

	(D)	Gear
Reciprocating Centrifugal	(D)	Diaphragm
	Centrifugal Answer not known	

- 45. During isentropic expansion of a gas in a convergent divergent, nozzle, The stagnation temperature in the conduit.
 - (A) Increases (B) Decreases
 (D) Zero
- 46. When a falling body has attained terminal velocity, the weight of the body is equal to
 - (A) Drag force minus buoyant force

Answer not known

- (B) Buoyant force minus drag force
 Drag force plus buoyant force
- (D) Pressure drag plus friction drag
- (E) Answer not known

(E)

- 47. Relationship between drag coefficient (CD) and particle Reynolds number (Rep)is
 - (A) $C_D = 24 \text{ Rep}^{-1.0}$
 - (C) $C_D = 24 \,\mathrm{Rep}^{0.5}$ (D) $C_D = 24 \,\mathrm{Rep}^{-0.5}$
 - (E) Answer not known
- 48. When Reynolds Number $(N_{\rm Re})=10^6$, the ratio of average velocity and maximum velocity is
 - velocity is

 (A) 10
 (B) 1.0
 (D) 0.5
 - (E) Answer not known

- 49. Hagen Poiseville Equation can be used for the experimental measurement of
 - (A) Flow rate
 - (B) Procedure
 - 4

Viscosity

- (D) Velocity
- (E) Answer not known
- 50. The power law model for non-Newtonian fluids is given by

$$\tau = k \left(-\frac{dv}{dr} \right)^n$$

What is the value of 'n' for dilatant fluids?

- (A) 0
- (B) 0.5
- (C) 1
- 9

Greater than 1

- (E) Answer not known
- 51. In thixotropic fluid viscosity with time.
 - (A) Increase

Decrease

- (C) No change
- (D) Increases and then decreases
- (E) Answer not known

52. The Effective Diffusivity (De) in catalytic Reaction is defined as

$$D_e = D_A \cdot \phi_p \, \sigma / \tau$$

(B) $D_e = \phi_p \, \sigma / D_A \, . \, \tau$

(C) $D_e = \tau \phi_p D_A / \sigma$

(D) $D_e = \tau D_A . \sigma / D_A \phi_p$

- (E) Answer not known
- 53. Consider the following reactions between gas A and two solid sperical particles B and C of the same size

 $A+B \xrightarrow{\kappa_1}$ gaseous product

 $A+C \xrightarrow{K_2}$ ash

The ash does not leave the particle C. Let t_1 and t_2 be the times required for A to completely consume particles B and C respectively. If k_1 and k_2 are equal at all temperatures and gas phase mass transfer resistance is negligible, then

- (A) $t_1 = t_2$ at all temperatures
- (B) $t_1 = t_2$ at high temperatures
- (C) $t_1 > t_2$ at high temperatures
- $t_1 < t_2$ at high temperatures
- (E) Answer not known
- 54. The loss of catalytic activity due to a loss of active surface area resulting from prolonged exposure to high gas temperature is called
 - (A) Promoter

(B) Poisioning

(C) Carrier

Sintering

55. If 'n' is the order of reaction, then unit of rate constant is

- (B) (time)⁻¹ (Concentration)ⁿ⁻¹
- (C) (time)ⁿ⁻¹ (Concentration)
- (D) (time)(Concentration)ⁿ⁻¹
- (E) Answer not known
- 56. For the reaction P+2Q=3R, molar rate of consumption of P is
 - (A) Double of that of Q
 - (B) Same as that of Q

- (D) $\frac{2}{3}$ of that of Q
- (E) Answer not known
- 57. Consider the reaction $B+2D \rightarrow 3T$ and the rate equation $-r_B = K_B C_B C_D^2$, $-r_D = K_D C_B C_D^2$, $r_T = K_T C_B C_D^2$; pick up the correct statement

- (B) $-K_{\rm B} = -\frac{1}{2} K_{\rm D} = \frac{1}{3} K_{\rm T}$
- (C) $r_B = \frac{1}{2} r_D = \frac{1}{3} r_T$
- (D) $K_B = 3K_D = 2K_T$
- (E) Answer not known

3.	The	그 것이 그리지 않아요 그리지 그릇으로 이 그것이 봤어서 뭐 그 그리지 않아 하지 않아 그 사람이 되었다.	on cor	responds to a stoichiometric equation is
	(1)	Elementary	(B)	Non-Elementary
	(C)	Parallel	(D)	Auto kinetic
	(E)	Answer not known		
).		control system is unstable if the litude ratio exceeding unity at the (loop frequency response exhibits an ver frequency" this rule is called
	(A)	Nyquist Criterion		
	(B)	Routh Stability Criterion		
	4	Bode Stability Criterion		
	(D)	Root LOCUS Criterion		
	(E)	Answer not known		
	The]	Bode stability criterion is applicable	e when	
	4	Gain and phase curves both decre	ase co	ntinuously with increase in frequency
,	(B)			ecreases with increase in frequency
	(C)	Gain and phase curves both incre		
	(D)	Gain curve decreases and phase c	urve ir	creases with increase in frequency
	(E)	Answer not known		
	The C	Controller produces an output signa	l that	s proportional to the Error is called as
	(A)	PI - Controller		P – Controller
	(C)	PID – Controller	(D)	PD – Controller
	(E)	Answer not known		

16

ASCE/2021

62. The expression $\exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$ represents,

Where $\zeta = \text{damping coefficient.}$

(A) Response time

(B) Decay ratio

(C) Rise time

Over shoot

- (E) Answer not known
- 63. The approach used for Linearization of nonlinear terms is
 - (A) Pade approximation
- Taylor-series expansion

(C) Fourier series

(D) Laplace tranforms

- (E) Answer not known
- 64. The initial value of the Unit step response of the transfer function $\frac{S+1}{2S+1}$ is
 - (A) 0

S) ½

(C) 1

(D) 2

- (E) Answer not known
- 65. The nature of roots of under damped system is
 - (A) Real and Equal

Complex

(C) Real and unequal

(D) Cannot be determined

- (E) Answer not known
- 66. The expression for oversheet is where, ζ = damping coeffcient

(B) $\exp\left(-\frac{\sqrt{1-\zeta^2}}{\pi\zeta}\right)$

(C) $\exp\left(\sqrt{1-\zeta^2}\right)$

(D) $\exp\left(\sqrt{1+\zeta^2}\right)$

- 67. The effect that relates the absorption and evolution of heat at the junctions of a thermocouple to the current flow in the circuit is called as
 - (A) EMF Effect

Peltier Effect

(C) Temperature Effect

(D) Static Effect

- (E) Answer not known
- 68. To measure limited range of flow rates of slurries and liquids with suspended materials, the most suitable type of flow meter is
 - Coriolis force type

(B) Turbine type

(C) Calorimetric type

(D) Nutating disc

- (E) Answer not known
- 69. Calomel electrode is used for measuring
 - (A) Temperture

(B) Pressure

(C) Velocity

(1) pH

- (E) Answer not known
- 70. All the four entries of 2×2 matrix $p = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$ are non-zero, and one of its Eigen

Value is zero, which of the following statement is true.

(A)
$$p_{11} p_{22} - p_{12} p_{21} = 1$$

(B)
$$p_{11} p_{22} - p_{12} p_{21} = -1$$

$$(p_{11} p_{22} - p_{12} p_{21} = 0)$$

(D)
$$p_{11} p_{22} + p_{12} p_{21} = 0$$

- (E) Answer not known
- 71. If $A^2 = A$, then matrix 'A' is called
 - Idempotent matrix

(B) Transpose matrix

(C) Conjugate matrix

(D) Hermitian matrix

- 72. The dimt of $f(x) = \frac{x}{\sin x}$ as $x \to 0$ is
 - (A) 0

S 1

(C) 2

(D) o

- (E) Answer not known
- 73. The value of $(1+i)^8$, where $i = \sqrt{-1}$ is
 - (A) 8 + 4i

(B) 8-4i

16

(D) 8

- (E) Answer not known
- 74. Selectivity in a super critical fluid are strong functions of
 - (A) Ion exchange
 - (B) Concentrations
 - (C) Osmosis

- Pressure
- (E) Answer not known
- 75. If the extraction temperature and pressure are only slightly above the critical point of the solvent, the operation is termed as
 - (A) Sublimation
 - (B) Leaching

- Supecritical fluid extraction
- (D) Gas permeation
- (E) Answer not known

76.	The	term permeability is defied as		
	4	Permeability = Solubility × diffus	sivity	
	(B)	Permeability = Solubility / diffusi	vity	
	(C)	Permeability = diffusivity / Solub	ility	
	(D)	Permeability = diffusivity / (Solub	oility)2	
	(E)	Answer not known		
77.	Nano	ofiltration exhibits a molecular weig	ght cut	off (MWCO) in the range of
	(A)	10 – 90 Da	\$	100 – 5000 Da .
	(C)	6000 – 10,000 Da	(D)	12,000 – 20,000 Da
	(E)	Answer not known		
	~			
78.		centration polarization in Reverse C)smosi	S 1S
	(A)	an ionic effect		
	(B)	higher concentration of solute at		
	(C)	higher solute concentration at per		
		higher solute concentration of me	mbrar	ne surface
	(E)	Answer not known		
79.		recovery of Caustic from hemi cellu nique of	ılose s	olutions in rayon manufacture uses the
	43)	Dialysis	(B)	Reverse Osmosis
	(C)	Ultra filtration	(D)	Micro filtration
	(E)	Answer not known		
80.	The	problems associated with concentration instead of con		polarization and fouling is overcome by nal dead-end filtration
	(A)	Ultra filtration	95	Cross flow
	(C)	Counter flow	(D)	Micro filtration
	(E)	Answer not known		

81.		es or understands a situation is	envir	onment or the way in which a person
	(A)	Attitude	(3)	Perception
	(C)	Motivation	(D)	Psycology
	(E)	Answer not known		
82.	In w	hich year, the Flixborough chemical	disas	ter occured?
	(A)	1959	45	1974
1	(C)	1963	(D)	1982
	(E)	Answer not known		
83.		emical (or) physical condtion that lerty, environment is termed as	nas th	e potential to cause damage to people,
	(A)	Safety	(B)	Prevention
	\$	Hazard	(D)	Risk
	(E)	Answer not known		
84.	In w	hich year, was the OSHA Act introd	uced?	
	(A)	1949	(B)	1962
	9	1970	(D)	1968
	(E)	Answer not known		
85.		generation and use of the hydroxy e water treatment processes is calle		e radical to destroy compounds in the
	(A)	Chemical precipitation processes		
	(B)	Tertiary treatment processes		
	(C)	Ion exchange processes		
	4	Advanced oxidation processes		
	(E)	Answer not known		
4.				

86.		t will be the dosage of Cl ₂ e water?	for disi	nfection for effluent from untreated
	(1)	6 – 25 mg/l	(B)	2-8 mg/l
	(C)	1 – 5 mg/l	(D)	2-6 mg/l
* *	(E)	Answer not known		
87.	Wha	t is the half life period of Radon ²	211 Rn ?	
	(A)	10 hrs	43)	14.6 hrs
	(C)	8.3 hrs	(D)	20 hrs
	(E)	Answer not known		
88.		percentage (volume) of Krypton sphere is	constitu	uent in the composition of unpolluted
	(A)	1.3 ppm	B)	1.0 ppm
	(C)	0.5 ppm	(D)	0.25 ppm
	(E)	Answer not known		
89.	The calle		coxic leve	els at successive levels of food chain is
	(A)	Bio accumulation	(B)	Bio magnification
	(C)	Eutrophication	(D)	Contamination
	(E)	Answer not known	,	
90.	Whic	ch air pollutant is responsible for	chlorosis	s in plants
	18	SO ₂	(B)	Ozone
	(C)	PAN	(D)	NO ₂
	(E)	Answer not known		
91.	Prese	ence of soluble organics in pollute	ed water	causes
	(A)	undesirable plant growth	1	depletion of oxygen
	(C)	fire hazards	(D)	explosion hazards
	(E)	Answer not known	, ,	
	\ <u>-</u> /			

- (A) Convex function
- (C) Elliptical function
- (E) Answer not known

- (D) Hyperbolic function
- 93. For a concave objective function whose constraints form a convex set,
 - Local maximum = Global maximum
 - (B) Local maximum < Global maximum
 - (C) Local minimum < Global minimum
 - (D) Local minimum = Global minimum
 - (E) Answer not known
- 94. When Spatial variations are considered, then the model is
 - (A) Steady state

(B) Unsteady state

- (C) Lumped parameter
- Distributed parameter
- (E) Answer not known
- 95. The function $f(x) = 6x^2 4x$ has
 - (A) maximum at $x = -\frac{1}{3}$
- (B) maximum at $x = \frac{1}{3}$
- (C) minimum at $x = -\frac{1}{3}$
- minimum at $x = \frac{1}{3}$

- (E) Answer not known
- 96. A well mixed CSTR without any concentration and temperature gradient is an example of
 - Lumped Parameter Model
- (B) Distributed Parameter Model

(C) Stochastic Model

(D) Discrete Model

- 97. Which among the following equations is not related to activity coefficient?
 - Lewis-Randall

(B) Wohl's

Margules (C)

(D) Wilson

- (E) Answer not known
- 98. Activity coefficient is a measure of
 - departure from ideal solution behaviour
 - departure of gas phase from ideal gas law (B)
 - (C) vapour pressure of liquid
 - (D) partial pressure of gas
 - (E) Answer not known
- Choose the incorrect equation for Differential equation for Entropy 99.

(A)
$$ds = \frac{C_P}{T} dT - \left(\frac{\partial V}{\partial T}\right)_p dP$$
 (B) $ds = \frac{C_V}{T} dT + \left(\frac{\partial p}{\partial T}\right)_V dV$

(B)
$$ds = \frac{C_V}{T} dT + \left(\frac{\partial p}{\partial T}\right)_V dV$$

(C)
$$ds = \frac{C_V}{T} dT - \frac{(\partial V/\partial T)_p}{(\partial V/\partial p)_T} dV$$

$$ds = \frac{C_p}{T} dT - \frac{(\partial V/\partial T)_p}{(\partial p/\partial V)_T} dV$$

$$ds = \frac{C_p}{T} dT - \frac{\left(\frac{\partial V}{\partial T}\right)_p}{\left(\frac{\partial p}{\partial V}\right)_T}$$

- (E) Answer not known
- For a steady state, steady flow process between one entrance and one exit, the mathematical expression of first law of thermodynamics is given by

$$\Delta H + \frac{\Delta U^2}{2} + g\Delta z = Q + W_S$$

(B)
$$\Delta H = Q$$

(C)
$$\frac{\Delta U^2}{2} = Q/W_S$$

(D)
$$\Delta H + g\Delta z = W_S$$

- (E) Answer not known
- For the hydrogenation of Acetylene to ethylene at a given temperature and pressure the required reaction is obtained by adding the following two reactions.

$$C_2H_2 \rightarrow 2C + H_2 - (1)$$

$$2C + 2H_2 \rightarrow C_2H_4 - (2)$$

If K₁ and K₂ are the equilibrium constants for the reaction (1) and (2) respectively, the equilibrium constant for the hydrogenation of acetylene to ethylene is

(A) K,/K,

 $K_1 + K_2$ (C)

ON K.K.

102.	containing 4% by mass caustic soda to produce lye containing 25% solids by mass representation of the water evaporated per 100 kg feed is				
	(A)	90 kg	(6)	84 kg	
	(C)	72 kg	(D)	75 kg	
	(E)	Answer not known			
103.	A "Li reacti		deci	ides the — in the chemical	
	(A)	Equilibrium constant	9	Conversion	
	(C)	Rate constant	(D)	Molecularity	
	(E)	Answer not known			
104.	The molecular weight of ideal gas is 40. What will be volume occupied by 0.2 kg of this gas at standard Tempressure and Pressure (STP)?				
	(A)	22.4 Litres	(B)	22.4 m^3	
	S	112 litres	(D)	4.48 m³	
	(E)	Answer not known			
105.		———— is defined as the ratio of th	e acti	al absolute humidity to the saturation	
	humi	dity.			
	(A)	Relative humidity	(B)	Percentage relative humidity	
		Percentage humidity	(D)	Relative saturation	
	(E)	Answer not known			
106.	Mola	lity is defined as the number of nt.	gram	moles of solute per — of	
	(A)	Litre	(8)	Kg	
	(C)	gm mole	(D)	gm ₈ /cm ²	
	(E)	Answer not known			

107.	Lyotropic liquid crystals are formed when compounds are treated with					
	(A)	Dipolar solvents	(3)	Polar solvents		
	(C)	Non polar solvents	(D)	Aprotic solvents		
	(E)	Answer not known				
108.	Whic	ch one among the following belongs to	stri	icture-insensitive properties of metal		
	(A)			Thermal conductivity		
	(C)	Electrical resistance		Thermal expansion coefficient		
	(E)	Answer not known	,	Thermal expansion coefficient		
			4			
109.	10/0					
109.		stainless steel means that it contains				
	(A)	18% chromium and 8% molybednum				
	(B)	18% nickel and 8% chromium				
	(C)	18% nickel and 8% molybednum				
	(E)	18% chromium and 8% nickel				
	(E)	Answer not known				
110.	German silver is an alloy of					
	US:	Copper, Nickel and Zinc	B)	Copper, Aluminium and Silver		
	(C)	Silver, Zinc and Aluminium (D)	Silver, Nickel and Zinc		
	(E)	Answer not known				
111.	Babb	itt metal (used for making bearing) cor	mpi	rises of		
	(A)	saw dust and iron dust mixture				
	05)	mainly tin (85%) and lead				
	(C)	zinc and aluminium		produces a		
	(D)	copper and nickel				
	(E)	Answer not known				
ACCE	V0001	26				

- 112. The most common filter aid is
 - diatomaceous earth

(B) calcium silicate

(C) sodium carbonate (D) silica gel

- Answer not known (E)
- 113. As settling continues, the moment when compression first evident is called
 - differential settling

(B) settling velocity

critical point

(D) sedimentation

- Answer not known (E)
- 114. In constant-rate filtration.
 - the pressure drop continuously decreases (A)
 - the pressure drop continuously increases
 - (C) the flow rate continuously decreases
 - (D) the flow rate continuously increases
 - Answer not known (E)
- Power number N_p in agitated vessel defined by,

(A)
$$N_p = \frac{p}{n^5 D_a^3 \rho}$$

$$N_p = \frac{p}{n^3 D_a^5 \rho}$$
(D)
$$N_p = \frac{p}{n^3 D_a^2 \rho}$$

$$(C) N_p = \frac{p}{n^2 D_a^3 \rho}$$

$$(D) \quad N_p = \frac{p}{n^3 D_a^2 \rho}$$

Answer not known (E)

Where.

P-Power

Da - Agitator diameter

 ρ – Density

n - Speed

- 116. A propeller agitator
 - produces axial flow

- (B) produces radial flow
- (C) moves at a speed above critical speed (D) moves at a speed below critical speed
- (E) Answer not known

117.	Rittinger's law states that the work required in crushing is proportional to							
	(A)	the number of particles obtained						
	W)	the new surface created						
	(C)	(C) the surface area of the feed particles						
	(D) the number of particles crushed							
	(E) .	Answer not known						
118.	In Bl	ake jaw crusher, the angle between	the ja	aws is usually				
	(A)	5° – 10°	(B)	15° – 19°				
	9	20° – 30°	(D)	45° – 60°				
	(E)	Answer not known						
119.	The basic laws of crushing is used to calculate							
	(A)	surface – volume ratio of product	(B)	sphericity of product				
	(C)	average size of the product	\$	power required for size reduction				
	(E)	Answer not known						
120.	Which of the following denotes the effect of compressibility in fluid flow							
	(A)	Weber number	5	Mach number				
	(C)	Euler number	(D)	Reynolds number				
	(E)	Answer not known						
101		1						
121.	In size reduction crushing efficiency is the ratio of the							
	(D)	surface energy created by crushing to the energy absorbed by the solid						
	(B)							
	(C)							
	(D)							
	(E)	Answer not known						

44.	THOS	phogrycolate is a				
	(A)	toxic compound				
	(B)	enzyme				
	(C)	precursor				
	(D)	photosensitive compound				
	(E)	Answer not known				
00	XX71-:-	1641 - 6-11 1	CC	1 119		
23.		ch of the following is not an example	offu	el cell?		
	(A)	Hydrogen – Oxygen cell				
	(B)	Methyl – Oxygen alcohol cell				
	(C)	Propane – Oxygen cell				
		Hexanone – Oxygen cell		(comp)		
	(E)	Answer not known				
24.	The s	standard emf of the hydrogen – oxyg	gen fu	el cell is		
	1	1.23 V	(B)	2.54 V		
	(C)	3.96 V	(D)	0.58 V		
	(E)	Answer not known				
25.		nonomer from which neoprene prod				
	(A)	Propylene	(B)	Ethylene		
	6	Chloroprene	_(D)	Styrene	*	
	(E)	Answer not known				
			,			
26.	Crusl	hed glass from imperfect articles, tr	im an		ses is kno	own as
	(A)	Feldspar	08	Cullet		(
	(C)	Borax	(D)	Fluorspar		
	(E)	Answer not known				

	(A)	Zinc oxide	(B)	Potassium chloride					
	(C)	Chlorine	4	Sodium silicate					
	(E)	Answer not known							
128.	Absolute alcohol contains								
		100% alcohol	(B)	95% alcohol					
	(C)	96% alcohol	(D)	90% alcohol					
	(E)	Answer not known							
129.	If a h	igh proportion of H ₂ S is presen	t in natura	al gas, it is called as					
	(A)	Sweet gas	43)	Sour gas					
	(C)	Wet gas	(D)	Residue gas					
	(E)	Answer not known							
	, Ar								
130.	Argor	nic triovida 'a minor ingredient	of glass m	anufacture is added					
100.	Arsenic trioxide, a minor ingredient of glass manufacture, is added To remove bubbles								
	(B)		auddon tor	mnovatura variation					
	(C)								
	(D)								
	(E)	Answer not known							
			in the state of th						
131.	High	alumina cement is manufactur	red by fusin	ng					
	(A) Limestone and slaked lime								
	(B)	(B) Limestone and quick lime							
	(4)	Limestone and bauxite							
	(D)	Limestone and sand							
	(E)	Answer not known							
			7.5 (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c						

127. Stabilizer used in paper manufacturing process is

- In a gas absorption column, if the absorption factor is equal to 1 and the murphree efficiency is 0.7, what is the overall column efficiency?
 - 0.58

(B) 0.46

0.7

(D) 0.9

- (E) Answer not known
- In continuous distillation, the slope of the food line is 133. Where q is the moles of liquid flow in the stripping section
 - $\frac{q}{(1-q)}$

-q/(1-q)(D) -(1-q)/q

- (E) Answer not known
- Which of the following relationship relates the mole fractions of components in liquid 134. for flash distillation of binary mixtures. and vapor phases ----

Where

- α is relative volatility
- is mole fraction in liquid
- y is mole fraction in vapor
- (A) $y = \frac{x}{1 + (\alpha 1)x}$

(D) $y = \frac{\alpha x}{1 + (\alpha - 1)x}$ $(D) \quad y = \frac{\alpha x}{1 - (\alpha - 1)x}$

(C) $y = \frac{x}{1 - (\alpha - 1)x}$

- (E) Answer not known
- Flash distillation operation is suitable for separating components that 135.
 - Boils at very close temperature (A)
- Boils at widely different temperature
- (C) Forms minimum boiling azeotrope (D) Forms maximum boiling azeotrope
- (E) Answer not known
- The gas phase reaction 2A + B = C + D occurs on the surface of a catalyst pellet at steady state. What is the value of the flux ratio N_A/N_c

(B) -0.5

(C) 2 (D) 0.5

137.	The temperature difference on either side of a heat exchanger ΔT_1 and ΔT_2 are equal. So the effective ΔT value is equal to ΔT_1 (or) ΔT_2 . What would be the value of <i>LMTD</i> in this case?					
	(A)	$LMTD > \Delta T_1$	(B)	$LMTD < \Delta T_2$		
	1	$LMTD = \Delta T_1$	(D)			
	(E)	Answer not known	(D)			
,	(E)	Answer not known				
138.	In ex disks	tended surfaces, ————————————————————————————————————	— of the	tube is multiplied a extended by fins,		
	(A)	Overall area	(B)	Inside area		
	45	Outside area	(D)	Average area		
	(E)	Answer not known				
139.	The point on the boiling curve where the heat flux is at the minimum and the surface is completely covered by a vapour blanket is called					
	(A)	Nucleate point	(B)	Boiling point		
	400	Leidenfrost point	. (D)	Critical heat point		
	(E)	Answer not known				
140.	"Max	imum wave length of radiation ————————————————————————————————————	n is inver	rsly proportional to the temperature" is		
	(A)	Stefan–Boltzman law	* 1			
	(B)	Planck's law				
	9	Wien's displacement law				
	(D)	Kirchhoff's law	4			
	(E)	Answer not known				
141.	Unste	eady state heat conduction occu	ırs, when			
	(A)	Temperature distribution is in	nt of time			
	D	Temperature distribution is dependent on time				
	(C)	Heat flows in one direction or		and the second of the second o		
	(D)	Three dimensional heat flow				
	(E)	Answer not known				
ASC	E/2021		32			

142.	If the monochromatic emissivity of a body is the same for all wave lengths, then it is called as					
	(A)	Black body	(B)	White body		
	S	Gray body	(D)	Red body		
	(E)	Answer not known				
143.	Pecle	t number is the product of				
		Reynolds number and Prandtl num				
	(B)	Reynolds number and Nusselt num				
	(C)	Grashoff number and Prandtl num	ber			
	(D)	Reynolds number and Grashof num	nber			
	(E)	Answer not known				
144.		transfer from higher temperatur	e to	low temperature region takes place		
	US	Fourier's law	(B)	Fick's law		
	(C)	Newton's law of viscosity	(D)	Pascal's law		
	(E)	Answer not known				
145.	The terminal settling velocity u_i varies with D_p in the Newton's law range is,					
	W.	$D_p^{0.5}$	(B)	$D_{p}^{0.25}$		
	(C)	$D_{p}^{0.005}$	(D)	$D_{n}^{1.0}$		
	(E)	Answer not known				
	(2)	2116 WOL 1100 MILOWIE				
146.	Which	h of the following is an area flow me	ter?			
	(A)	Orifice meter	(B)	Venturi meter		
	(C)	Pitot tube	(0)	Rotameter		
	(E)	Answer not known				

For a fully developed flow, relationship between transition length and Re for laminar 147. flow is

Where

 x_{i} = transition length

D = diameter of pipe

Re = Reynolds number

(A) $x_{*}/D = 0.5 \,\mathrm{Re}$ (D) $x_t/D = 0.05 \,\text{Re}$ (D) $x_t/D = \text{Re}$

 $x_t/D = 0.005 \,\mathrm{Re}$ (C)

- (E) Answer not known
- 148. Terminal velocity is
 - A constant velocity with no acceleration
 - (B) A fluctuating velocity
 - Attained after moving one-half of the total distance (C)
 - (D) Velocity of solid on the fluid
 - (E) Answer not known
- 149. Kinematic viscosity is defined as equal to
 - (A) Dynamic viscosity × density
- Dynamic viscosity / density
- (C) Dynamic viscosity × pressure
- (D) Pressure × density

- (E) Answer not known
- Fully developed flow is 150.
 - Changing velocity distribution
 - Un changing velocity distribution
 - (C) Changes in density
 - (D) No change in density
 - (E) Answer not known

151. In a gas-liquid reaction, if the resistance to reaction lies in bulk of liquid, then - reactors need to be avoided.

Tower type

(B) Spherical type

Rectangular type (C)

(D) Conical type

- Answer not known (E)
- 152. Which of the following is a controlling factor in very fast heterogenous reaction?

Heat and mass transfer effects

(B) Pressure

(C) Density (D) Composition of reactant

- (E) Answer not known
- Which of the following relationship is applicable for fluid-particle reaction, when 153. diffusion through gas film is controlling?

Where t/t is the fractional time

r_c is radius of unreacted core

R is radius of particle?

(A)
$$t/\tau = 1 - 3\left(\frac{r_c}{R}\right)^2 + 2\left(\frac{r_c}{R}\right)^3$$

$$t / \tau = 1 - \left(\frac{r_c}{R}\right)^3$$

(C)
$$t/\tau = 1 - \left(\frac{r_c}{R}\right)^{\frac{5}{3}}$$

(D)
$$t/\tau = \left(\frac{r_c}{R}\right)^3 - 1$$

Answer not known (E)

154.	The constriction factor (σ) is a function of the ratio of maximum to minimum				
	(A)	Pore volume	(8)	Pore area	
	(C)	Temperature	(D)	Void space	
	(E)	Answer not known			
155.	The conversion X_A and residence time τ data are collected for zero order liquid phase reaction in a CSTR. Which of the following will be a Straight Line.				
	A	X_{A} Vs $ au$	(B)	$X_{\scriptscriptstyle A} \mathrm{Vs} \;\; \ell \mathrm{n} \; au$	
	(C)	$\frac{X_A}{1-X_A}$ Vs $ au$	(D)	$-\frac{X_A}{1+X_A}$ Vs τ	
	(E)	Answer not known			
156.	first reacto	and smaller reactor Second) is m	odifie	e is connected in series (Bigger reactor d as smaller reactor first and bigger rrangement $X_{{\scriptscriptstyle A2}}$ compared with old	
	(A)	$X_{A1} > X_{A2}$	(B)	$X_{A1} < X_{A2}$	
	40	$X_{A1} = X_{A2}$	(D)	No comparision can be made	
	(E)	Answer not known			
157.	For id	lentical feed composition and flow v with a total volume V gives the same	ate, ie cor	N mixed flow reactor in series of equal oversion as a single ————————————————————————————————————	

first order reactions.

Plug flow reactor of volume V (B) CSTR of volume $\frac{N}{V}$

- Plug flow reactor of volume $\frac{V}{N}$ (C)
- (D) Plug flow reactor of volume VN

(E) Answer not known

158. Space time equals the mean residence time

When the density of the reaction mixture is constant

- For large diameter tubular reactor (B)
- (C) For narrow diameter tubular reactor
- (D) For CSTR
- (E) Answer not known

- The value of 'n' for a chemical reaction $A \rightarrow B$, whose reaction rate is $\alpha \ C_A^n$, will be if the rate of the reaction increases by a factor of 8 when the concentration of A is doubled.
 - 0 (A)

(C)

- (E) Answer not known
- The reaction A→B is conducted in an isothermal batch reactor. If the convertion of A increases Linearly with holding time, then the order of the reaction is

(B) 1

1.5 (C)

0

(D) 2

- (E) Answer not known
- For the following reaction, the rate constant at 373 K is 0.5/min. $0.5 \text{ A+B} \rightarrow \text{C}$, the 161. overall order of the reaction is
 - (A) 0.5

(C) 1.5

- (E) Answer not known
- 162. Consider the parallel decomposition of A of different orders

$$A \rightarrow R$$
 $r_R = 1.0$

$$A \rightarrow S$$
 (desired) $r_s = 2C_A$

$$A \rightarrow T$$

$$A \rightarrow T$$
 $r_T = C_A^2$

S is the desired product, the fractional yield in terms of 'S' is

(B)
$$2C_A (1 + C_A)^2$$

 $(C) \qquad \frac{\left(1+C_{A}\right)^{2}}{2C_{A}}$

(D) $\frac{1}{2C_A}$

- (E) Answer not known
- is the ratio of the number of moles of desired product formed per 163. mole of undesired product formed.
 - (A) Yield

Selectivity

Conversion (C)

(D) Order

(E) Answer not known

	(A)	Amplitude ratio versus frequency				
	(B)	Phase angle versus frequency				
	(C)	Frequency Versus phase angle				
	Amplitude ratio, phase angle versus frequency					
	(E)	Answer not known				
165.	The value of phase angle for a PID controller with $\omega = 0$ is					
	(A)	90°	(B)	-90°		
	(C)	-180°	(D)	180°		
	(E)	Answer not known				
166.	1 Dec	ibels =				
	where					
	AR =	Amptitude ratio		The markets of the second		
	(A)	20 log _e (AR)	(B)	$20 \log_{10} (AR)^{0.5}$		
		$20\log_{10}(AR)$	(D)	$20\log_e(AR)^{0.5}$		
*	(E)	Answer not known				
167.	Response of a Linear Control System for a change in set point is called					
	(A)	Frequency response	(B)	Transient response		
	195	Servo problem	(D)	Regulator problem		
	(E)	Answer not known				
168.	When the response of a second-order system for the damping ratio (ζ) of the system					
	less than 1 is said to be					
	(1)	Under Damped System	(B)	Damped System		
1 <u>y</u> 1	(C)	Over Damped System	(D)	Critically Damped System		
	(E)	Answer not known				
ASCI	E/2021	38	3	• • • • • • • • • • • • • • • • • • •		

164. Bode diagram is the graph between

169.	Hydraulic radius is the ratio of			
	(A)	Wetted perimeter to flow area		
	0	Flow area to wetted perimeter		

- (C) Flow area to square of wetted perimeter
- (D) Square root of flow area to wetted perimeter
- (E) Answer not known
- 170. Pick out the first order system from the following
 - (A) Damped vibrator

- (B) Mercury manometer
- Mercury in glass thermometer
- (D) Two Tank in series

- (E) Answer not known
- 171. Find x(t) for the following ODE using Laplace transformation $\frac{dx}{dt} + 3x = 0; x(0) = 2$.
 - (A) 2e^{3t}

(B) e^{3t}

2e

(D) e^{-3}

- (E) Answer not known
- 172. The temperature limits of the mercury filled pressure thermometer are about
 - −35° F to 1000° F

- (B) Less than -35° F
- (C) Greater than 4000° F
- (D) Between 1500 3500° F

- (E) Answer not known
- 173. Optical pyrometers are calibrated by focussing them on a standard strip lamp whose temperature is known.
 - (A) Sodium

Tungsten

(C) Mercury

(D) Flourascent

(E) Answer not known

- The type of error occured due to limitations of Physical measurement and human blunder is
 - Data error

(B) Absolute error

(C) Relative error (D) Round off error

- (E) Answer not known
- Which of the following will be termed as Neumann Boundary condition in heat 175. transfer through retangular fin?
 - $T(x=L)=T_{x}$ (A)

(B) $T(x=0)=T_{k}$

 $\frac{dT}{dx}\Big|_{x=L} = 0$

(D) $-K\frac{dT}{dx}\Big|_{x=L} = h(T - T_{\infty})$

- (E) Answer not known
- The rate of convergence in Newton Raphson method is of order
 - (A) 1

(C) 3

- (E) Answer not known
- The general equation to a non-homogenous linear first order ordinary differential equation will be

(A)
$$\frac{dy}{dx^2} + P(x)y = Q(y)$$

(B)
$$\frac{d^2y}{dx} + P(y)x = Q(y)$$

(C)
$$\frac{d^2y}{dx^2} + P(xy) = Q(xy)$$

(B)
$$\frac{d^2y}{dx} + P(y)x = Q(y)$$

$$\frac{dy}{dx} + P(x)y = Q(x)$$

- Answer not known (E)
- 178. The system of Equations

$$2x + 4y = 10$$

$$5x + 10y = 25$$

- (A) has no unique solutions
- has only one solution
- (C) has only two solutions
- has infinite solutions

- (E) Answer not known

179.	Plate and Frame module has a high cost and a moderate Packing density, it finds use in all membrane applications except						
	(A)	Flash distillation	(B)	Crystalization			
	(C)	Pervaporation	1	Gas-Permeation			
	(E)	Answer not known	Med II				
				o inette (1932), extra incollid (1986)			
180.	The mean free path of the molecules is greater than the pore diameter, resulting in so-called						
	1	Knudsen diffusion	(B)	Eddy diffusion			
	(C)	Passive diffusion	(D)	Facilitated diffusion			
	(E)	Answer not known					
181.	Thoi	on evaluation consists of a wester in	a aluhl	o motuis to subish shows I success because			
101.		The ion exchanger consists of a water insoluble matrix to which charged groups have been ————— kind of bound.					
	(A)	ionic	(B)	non-ionic			
	45	covalent	(D)	mettalic			
	(E)	Answer not known					
182.	The t	technique used to treat the reject s	Salt So	lution from a reverse Osmosis System			
	(A)	Extraction	(B)	Leaching			
	100	Electro dialysis	(D)	Adsorption			
	(E)	Answer not known	, T				
100	ml	Manakaran ahirk kara Para Ci	c				
183.	The Membranes, which have Pore Size of —————, are used Primarily to filter bacteria and yeast and Provide Cell-Free Suspensions						
	(A)	0°A – 50°A	(B)	50°A – 100°A			
	(C)	100°A – 200°A	(0)	200 – 1,00,000°A			
	(E)	Answer not known					
184.	Flat sheet membranes for reverse osmosis are usually used in						
	(A)	tubular module		spiral wound module			
	(C)	frame module	(D)	hollow module			
	(E)	Answer not known	(D)	Monow mounte			
	(-)	ZIIIO WOL HOU KHOWH					

- 185. The separation process in which a stream of super saturated solution is passed through a fluidized bed of growing crystals, within which supersaturation is released by nucleation and growth is
 - Circulating liquid Crystallisation
 - (B) Circulating magma Crystallisation
 - (C) Evaporative Crystallisation
 - (D) Forced Crystallisation
 - (E) Answer not known
- 186. In melt Crystallization, two (or) more soluble species are separated by
 - (A) Zone melting

Partial freezing

(C) Sublimation

(D) Progressive freezing

- (E) Answer not known
- 187. In the Nalgonda technique for defluoridation, the chemicals used are
 - (A) Activated alumina

Lime and alum

(C) Bone char

(D) Sodium chloride

- (E) Answer not known
- 188. Chlorine has an odour threshold of ppm (parts per million)
 - (A) 0.01 ppm

(B) 0.02 ppm

(f) 0.05 ppm

(D) 0.5 ppm

- (E) Answer not known
- 189. Reaction Hazard Index is

(B) $\frac{10 \text{ T}_d}{\text{T} - 30\text{E}}$

(C) $\frac{T_d}{T_c + 30E_c}$

(D) $\frac{T_d}{T_a + E_a}$

(E) Answer not known

190.	In waste water treatment, which of the following process is used to control corrosion due to H ₂ S						
	(A)	Anaerobic treatment	(B)	Chemical neutralisation			
	(C)	Aerobic treatment	(1)	Chemical precipitation			
.*	(E)	Answer not known					
191.	Prim	ary sedimentation tanks remove					
	10	50-70% of the suspended solids	(B)	10 – 20% of the suspended solids			
	(C)	20 – 40% of the suspended solids	(D)	1 – 10% of the suspended solids			
	(E)	Answer not known					
192.	The major advantage of anaerobic treatment of waste water is						
	(1)	lower biomass yield	(B)	large nutrient requirement			
	(C)	higher reactor volume required	(D)	higher energy requirement			
	(E)	Answer not known					
193.	The	The noise level at the Threshold of pain is					
	(A)	85 dB	(3)	140 dB			
	(C)	90 dB	(D)	120 dB			
20	(E)	Answer not known					
194.	Excess nitrate present in drinking water causes						
	(A)	Minamata disease	(B)	Itai-Itai disease			
	45	Blue baby syndrome	(D)	Fluorosis			
	(E)	Answer not known					
195.	Dropping of leaves due to pollution is called as						
,	41)	abscission	(B)	epinasty /			
	(C)	chlorosis	(D)	necrosis			
	(E)	Answer not known					

196.	ALC: The second	The Simplest Device used for Sampling Particles greater than 10 μ m in diameter					
	(C) (E)	Dust fall collector Electrostatic Precipitation Answer not known	(B) (D)	High volume filter Absorption method			
197.	The	The Return On Investment (ROI) is defined by					
	1	$ROI = \frac{Cumulative net profit}{Plant life \times initial investme}$	$\frac{1}{\text{nt}} \times 1$				
	(B)	$ROI = \frac{Plant life \times Initial investme}{Cumulative net profit}$	$\frac{\text{nt}}{} \times 1$	00			
	(C)	$ROI = \frac{Plant life - Initial investment}{Cumulative net profit}$	ent ×1	00			
	(D)	$ROI = \frac{Cumulative net profit}{Plant life + Initial investment}$	$\frac{1}{2}$ × 1	00			
<u>.</u>	(E)	Answer not known					
198.		o calorimeter is used to find		property of the fuel.			
	(A)	Viscosity	(5)	Calorific value			
	(C)	Density	(D)	Latent heat			
	(E)	Answer not known					
199.	min ,	$\min f(x)$					
	Subje	Subject to $a_i \leq g_i(x) \leq b_i$, $i = 1, m$					
	and $l_i \le x_i \le U_i$; $J = 1, \dots, n$						
	is the general form of						
	(A)	Linear Programming	(B)	Dynamic Programming			
	40	Non Linear Programming	(D)	Quadratic Programming			
	(E)	Answer not known					
200.	Pick out the property of Newton iterative method from the following:						
	(A)	24. XXX (C. 1. XXX) 전 : (C. 1. XXX) 전					
	P	Quadratic convergence					
	(C)	Quadratic divergence		indication and the second of the			
	(D)	Polynomial function					
	(E)	Answer not known		The second secon			

ASCE/2021